Linear Algebra II

03/04/2018, Tuesday, 14:00-17:00

Please write your name and student number on the exam ánd on the envelope. The exam contains 6 problems.
$1 \quad(8+7=15 \mathrm{pts})$
Orthonormal basis

Consider the vector space \mathbb{R}^{4} with the inner product

$$
\langle x, y\rangle=x^{T} y .
$$

Let $S \subset \mathbb{R}^{4}$ be the subspace given by

$$
S=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\right\}
$$

(a) Determine an orthonormal basis for S.
(b) Find the closest element in the subspace S to the vector

$$
\left[\begin{array}{l}
a \\
b \\
a \\
b
\end{array}\right]
$$

where a and b are real numbers.
$2(8+7=15 \mathrm{pts})$
Cayley-Hamilton
(a) For given real numbers a, b, c, d we consider the real matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Determine α and β such that $A^{2}+\alpha A+\beta I=0$.
(b) For given real numbers a, b, c, d we consider the matrix

$$
A=\left[\begin{array}{llll}
0 & 0 & 0 & -a \\
1 & 0 & 0 & -b \\
0 & 1 & 0 & -c \\
0 & 0 & 1 & -d
\end{array}\right]
$$

Determine α, β, γ and δ such that $A^{4}+\alpha A^{3}+\beta A^{2}+\gamma A+\delta I=0$.

Consider the matrix

$$
M=\left[\begin{array}{rr}
6 & 2 \\
-7 & 6
\end{array}\right] .
$$

(a) Show that the singular values of M are 10 and 5 .
(b) Find a singular value decomposition for M.
(c) Find the best rank 1 approximation of M.
$4 \quad(5+5+5=15 \mathrm{pts})$

Positive semi-definite matrices and eigenvalues

Let A be a real symmetric $n \times n$ matrix.
(a) Prove that all eigenvalues of A are real.
(b) Prove that if A is positive semidefinite then every eigenvalue λ of A satisfies $\lambda \geqslant 0$.
(c) Prove that if every eigenvalue λ of A satisfies $\lambda \geqslant 0$ then A is positive semidefinite.
$5(3+2+3+3+4=15 \mathrm{pts})$
Eigenvalues and multiplicity
(a) Let A be a real $m \times n$ matrix and B a real $n \times m$ matrix. Let $\lambda \neq 0$. Show that λ is an eigenvalue of $A B$ if and only if it is an eigenvalue of $B A$.

Next, let a and b be vectors in \mathbb{R}^{n} such that $a^{T} b \neq 0$.
(b) Show that $a^{T} b$ is an eigenvalue of the $n \times n$ matrix $b a^{T}$.
(c) Show that $R\left(b a^{T}\right)$ is equal to $R(b)$.
(d) Determine $\operatorname{rank}\left(b a^{T}\right)$
(e) Show that 0 is an eigenvalue of $b a^{T}$ and determine its geometric multiplicity.
$6(5+5+5=15 \mathrm{pts})$
Jordan canonical form

Consider the matrix

$$
M=\left[\begin{array}{llll}
a & 1 & 0 & 0 \\
0 & a & 1 & 0 \\
0 & 0 & b & 1 \\
0 & 0 & 0 & b
\end{array}\right]
$$

where a and b are arbitrary real constants.
(a) Determine for all a and b the eigenvalues of M together with their algebraic multiplicities.
(b) Give necessary and sufficient conditions on a and b under which M is in Jordan canonical form
(c) Assume that $a \neq b$. Determine the Jordan canonical form of M. Explain your answer clearly!

